

Exploring the Relationship Between Submaximal and Maximal Aerobic Fitness and Glycemic Control in Youth with Type 1 Diabetes Mellitus Belmont RK^{1,2}, Byra MM¹, da Silva SM¹, Obeid J^{1,3}, Timmons BW^{1,3}

Background

- Evidence suggests maximal aerobic fitness is reduced in T1DM youth compared with their healthy peers ^{1,2}.
- Studies in youth to date have only reported on maximal aerobic fitness parameters ^{1,3}.
- Few studies have explored the relationship between glycemic control and submaximal aerobic fitness ^{3,4}.

Objectives

- 1. Assess the relationship between glycemic control and maximal and submaximal aerobic fitness parameters.
- 2. Compare fitness parameters between T1DM youth with good (T1DM-G) and poor (T1DM-P) glycemic control.

Methods

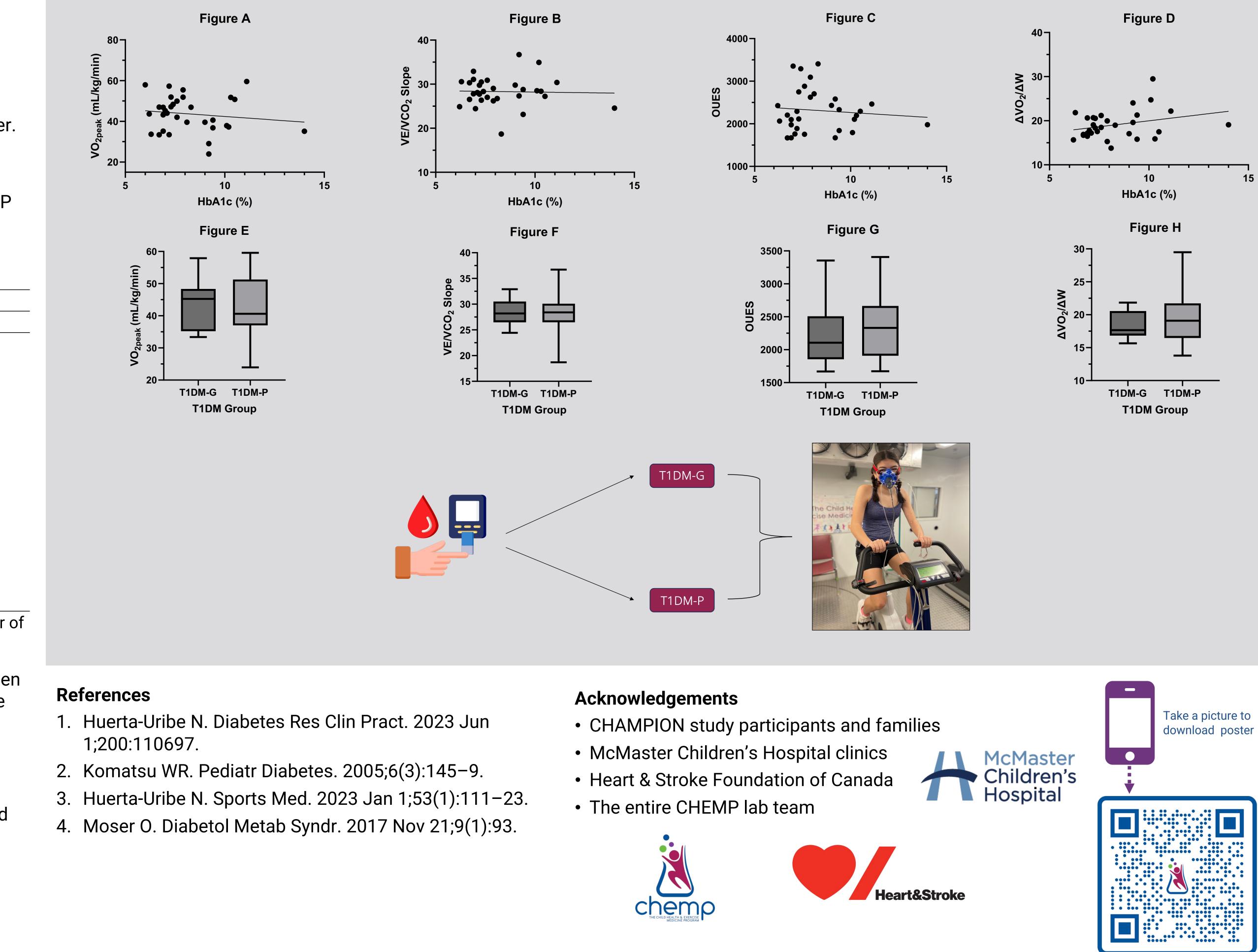
- Youth aged 7-17 diagnosed with T1DM for \geq 1 year were recruited from McMaster Children's Hospital.
- Maximal and submaximal aerobic fitness parameters were determined by a cardiopulmonary exercise test on a cycle ergometer.
- Hemoglobin A1c (HbA1c) values were determined from medical records closest to participants' study visit.
- Participants were grouped into T1DM-G (HbA1c \leq 7.5%) and T1DM-P (HbA1c > 7.5%).

Results

Table 1. Participant Characteristics by T1DM Group

	T1DM-G	T1DM-P
	$Mean \pm SD$	$Mean \pm SD$
N (% female)	15 (33.3%)	17 (52.9%)
HbA1c (%)	6.87 ± 0.43	9.40 ± 1.61
Age (years)	13.13 ± 2.57	13.74 ± 2.39
Tanner	3.50 ± 1.83	3.30 ± 0.82
YPHV (years)	0.09 ± 2.39	0.88 ± 2.75
Height (cm)	159.51 ± 15.69	159.67 ± 11.95
Height%ile	65.34 ± 20.97	60.89 ± 26.61
Weight (kg)	53.29 ± 16.83	52.87 ± 13.41
Weight%ile	68.09 ± 20.12	62.86 ± 27.01
BMI (kg/m²)	20.41 ± 4.04	20.63 ± 3.98
BMI%ile	60.29 ± 25.98	59.93 ± 28.37
% Body Fat	17.00 ± 8.54	22.09 ± 10.39
FFM (kg)	45.05 ± 13.46	40.40 ± 9.42

BMI, body mass index; FFM, fat free mass; HbA1c, hemoglobin A1c; N, number of participants; SD, standard deviation; YPHV, years to peak height velocity


• Peak oxygen uptake (VO_{2peak}), ventilatory efficiency (VE/VCO₂), oxygen uptake efficiency slope (OUES) and work efficiency ($\Delta VO_2/\Delta W$) were not significantly correlated with HbA1c (Figures A-D) or different between the T1DM groups (Figures E-H).

Discussion

- Examining aerobic fitness across a range of exercise intensities and glycemic levels may be critical in informing exercise-based interventions for T1DM⁴.
- Alternative T1DM group cutoffs may provide further information regarding the implications of glycemic control on aerobic fitness.

¹ Child Health & Exercise Medicine Program, McMaster University ² Bachelor of Health Sciences (Honours) Program, McMaster University ³ Department of Pediatrics and Kinesiology, McMaster University

Youth with poorly controlled Type 1 Diabetes Mellitus display similar maximal and submaximal aerobic fitness levels compared to youth with good glycemic control.

